Using The Sequence GAN To Backpropagate Through Discrete Data

Sumit Minocha, Ryan Mui, and Matt Linker
Stanford Computer Science
{sminocha, ryanmui, mslinker}@stanford.edu

Abstract

General Adversarial Networks (GANSs)
have shown significant success in the
domain of images, however, the same
achievement has not come to fruition in
the realm of text, mainly due to GANS’
difficulties with handling discrete data.
In our paper we examine the Sequence
General Adversarial Network (SeqGAN),
one of the most promising workarounds
to this problem presented by Yu et al.
(2017). Implementing this GAN variation,
we then attempt to generate text by piping
in the Stanford Sentiment Treebank (SST)
dataset and analyzing the sentiment of the
generated output. In an attempt to train the
SeqGAN on datasets with different senti-
ment skews, we discover that partitioning
the SST significantly reduced the perfor-
mance of our model as it vastly reduced
the size of the vocabulary. We also en-
counter evolving levels of sentence coher-
ence (sampling from the generated text at
various times) as the model trains, and we
explore potential reasoning for this being
the case.

1 Introduction

In 2014, Ian Goodfellow and his team introduced
a method for training generative models called
Generative Adverserial Networks (GANs) (2014).
GANSs have since garnered quite a bit of attention
in the computer vision community as they have
demonstrated much promise applied to image gen-
eration; however, the same cannot be said for text
generation.

A typical GAN structure involves two neural
networks, a discriminator D and a generator G. D
is trained to decide whether input data is fake or

real, while G is simultaneously trained to gener-
ate data that fools D into thinking that fake data
is real. The propagation of gradients back from
the discriminator through the generated samples
to G (a step which is critical to the proper func-
tioning of a GAN) relies on the generated data
being continuous (M. Kusner, 2016). However,
text data exists as sequences of discrete items and
therefore is inherently not continuous. The back-
propagated gradients can’t move through the non
differentiable discrete data, so they zero out. Ulti-
mately, the reason that GANs have difficulty gen-
erating sequences of discrete tokens is as follows.
The generator is initialized with a random sample,
and then is deterministically transformed accord-
ing to the model parameters (I. Goodfellow and
Bengio, 2014). In the case where the generated
data is continuous, the discriminator loss informs
updates to the generator’s parameters; however, in
the case where the generated data is discrete, these
updates from the discriminator will point to a word
that most likely doesn’t exist in vocabulary space
(Lantao Yu, 2017).

In this paper, we aim to reimplement and ex-
plore the inner workings of the Sequence GAN
with policy gradient, which is Lantao Yu and his
team’s solution to the above problem (2017). This
model represents a sequence generation procedure
as a sequential decision making process, where
Monte Carlo (MC) search is incorporated into
the policy gradient to approximate and directly
train the generative model’s policy, thus avoiding
the differentiation difficulty for discrete data men-
tioned previously. The SeqGAN architecture as
well as the role this updated policy gradient ap-
proach plays in the model is elaborated on in Sec-
tion 3.

Our inputs include text samples extracted from
the Stanford Sentiment Treebank dataset (SST)
and a couple subsets of the dataset. We compare

our outputs generated by the SeqGAN to a Max-
imum Likelihood Estimate baseline model qual-
itatively using human evaluations. Our experi-
ments show that while the MLE implementation
outputs words that contain more sentiment mean-
ing, it still lacks the ability to learn the nuances
of text phrases. Our SeqGAN model on the other
hand is capable of generating some fluid phrases.
Additionally, we notice that when training on the
dataset subsets, our implementation produces sig-
nificantly worse results as training iterations past
6,000 increase.

2 Related Work

Our work is originally inspired by the research
of Ian Goodfellow et al., in which he demon-
strates the success of the GAN learning architec-
ture on image input types (2014). From his novel
paper, many subsequent extensions of the GAN
have been explored, including conditional GANs
(cGANs) (M. Mirza, 2014) and inverted condi-
tional GANs (IcGANSs) (G. Perarnau, 2016). Ad-
ditionally, others have diverged from image gener-
ation, focusing on the problem of representing dis-
crete data as differentiable in order to apply GANs
to text (Xiao, 2017; Lantao Yu, 2017; M. Kusner,
2016).

As alluded to in the Introduction, while Good-
fellow’s work on GANs kicked the adversarial
wave off, the work of GANSs for text generation
has been less prolific. The difficulty of GANs op-
erating on discrete data come from the discrimina-
tor only being able to assess a complete sequence
instead of continuously updating discrete tokens.
This problem is particularly critical for text gener-
ation, as words are obviously discrete. This issue
has represented perhaps one of the most significant
barriers in recent years to successful GANs on text
models.

Yu et al (2017) and Kusner et al (2016) have
come up with two of the most popular solutions
that address this problem. On the other hand,
Bowman et al (2016), and Li et al (2018) move
outside the realm of GAN-based text generation
implementations and try to achieve comparable re-
sults.

Our project implementation is primarily based
on Yu et al.’s Sequence GAN (2017). Instead of
looking only at existing generated tokens, Yu uses
Monte Carlo simulation to consider the tokens that
will still be generated. This allows for estima-

tion of intermediate states, from which the team
is able to form gradients and successfully back-
propagate through discrete data. Kusner et al. pro-
pose another promising workaround that instead
uses the Gumbel-softmax distribution, which is a
continuous approximation to a multinomial distri-
bution parameterized in terms of the softmax func-
tion (2016). A differentiable approximation of the
discrete data is attained by sampling from this dis-
tribution, which is then used to train GANSs on se-
quences of discrete tokens. The proposed LSTM
is sampled through, and takes as input a sample
pair, which effectively replaces the initial cell and
hidden states. From this sample the generator con-
structs a sequence by successively feeding its pre-
dictions as input to the following LSTM unit.

Bowman et al. (2016) introduce a highly cited
non-GAN rnn-based variational autoencoder gen-
erative model that incorporates distributed latent
representations of entire sentences, which allows
for explicit modeling of holistic properties of sen-
tences such as style, topic, and high-level syntactic
features. Recurrent neural network language mod-
els (rnnlms) represent some very state of the art re-
search in the field of unsupervised generative mod-
eling for natural language sentences. Specifically,
the model that is outlined is an extension of the
rnnlm that, while effective, is not able to learn a
vector representation of the full sentence and thus
experiences mixed success in the performed ex-
periments (2016).

In Li et al. (2018), the authors introduce a non-
GAN system that does not require a priori knowl-
edge of positive and negative attribute words, re-
quiring only a tagged corpus of positive and nega-
tive reviews. Under this methodology, sentiment-
leading words are identified and weighted by com-
paring their frequency in positive and negative
reviews. From there, reviews are analyzed and
attributes with a strong sentiment are extracted.
Next, the opposite-sided sentiment corpus is an-
alyzed with an RNN to identify and generate op-
posite sentiment attributes found in similar con-
texts, which are then inserted into the original
sentence. This method significantly outperformed
previous systems of sentiment transformation for
text, including existing GAN-based methods, but
required quite a robust dataset with correspond-
ing, roughly oppositely attributed samples. Fi-
nally, there are several open-source implementa-
tions of GAN variants online (Lantao Yu) and

(codekansas). We utilize and make modifications
to the latter implementation.

3 Data and Methods

Our goal with this work was to generate sample
sentences of text via Lantao Yu et al.’s SeqGAN
implementation (2017). Along these lines, we also
wanted to test a couple hypotheses under the um-
brella of this text generation SeqGAN approach.
The first hypothesis is, point blank, can we use a
SeqGAN architecture to interpret discrete data and
output generated text? Second, how would chang-
ing the training dataset’s distribution of sentiment
affect the performance and output of our SeqGAN
in its task of generating text?

3.1 Dataset

This film
©)

other kind intelligent humor

cleverness

Figure 1: Example parse tree sentence in the Stan-
ford Sentiment Treebank

Sentiment Score Meaning
0 Very Negative
1 Negative
2 Neutral
3 Positive
4 Very Positive

Table 1: Sentiment Ratings

Dataset Sentiment Examples
Pos 0-1 3611
Neg 3-4 3311
Full 0-4 8545

Table 2: SST Data Splits

We chose to test our implementation on
the Stanford Sentiment Treebank dataset
(SST)(Richard Socher and Potts, 2013), which
consists of 11,855 sentences labeled with a

sentiment score between 0 and 4 (corresponding
meaning of each sentiment rating is described in
Table 1). In addition to using the full dataset, we
also constructed derivative datasets containing
just positive sentiment sentences (scores of either
3 or 4) and just negative sentiment sentences
(scores of either 0 or 1). These splits were made
in order to test our hypotheses discussed.

3.2 SeqGAN Architecture

TS ' ' Next MC
' : action search D

Reward

State
Reward

Reward

T Reward

Policy Gradient

Figure 2: SeqGAN illustration. Left: D is trained
over both the real data as well as the generated
data from G. Right: G is trained by policy gradient
where the final reward signal is provided by D and
is passed back to the intermediate action value via
Monte Carlo search (Lantao Yu, 2017)

Algorithm 1 Sequence Generative Adversarial Nets
Require: generator policy Gg; roll-out policy (g; discriminator
Dy; a sequence dataset S = {X 1.7}

1: Initialize G, Dy with random weights 8, ¢.
2: Pre-train Gy using MLE on &
3 86
4: Generate negative samples using Gy for training Dy
5: Pre-train Dy via minimizing the cross entropy
6: repeat
7. for g-steps do
8: Generate a sequence Y1.7 = (y1,...,yr) ~ Go
9: fortinl:T do
10: Compute Q(a = y¢; 8 = Y1.4-1)
11: end for
12: Update generator parameters via policy gradient
13: end for
14: for d-steps do
15: Use current Gg to generate negative examples and com-
bine with given positive examples &
16: Train discriminator Dy for k epochs by
17: end for
188 B+« 4@

19: until SeqGAN converges

Figure 3: SeqGAN Algorithm

Following (Lantao Yu, 2017), we implement a Se-
gGAN to generate output text. Given a dataset
of structured sequences, we train a generative
model Gy, parameterized by 6 and a discrimina-
tive model D, parameterized by ¢.

Gl is trained to produce a sequence Y7 : 1" =
(Y1, s Yty s y7), Yt € Y, where Y is the vo-
cabulary of candidate tokens. This problem is

approached as a reinforcement learning problem
where the state s is the current produced tokens
(y1,...,y¢1) at timestep ¢, and the action a is the
next token y; to select. This results in a policy
model G (y¢|Y1.41) which is stochastic, and a state
transition that is deterministic after an action has
been chosen.

Dy is trained by providing positive examples
from real sequence data and negative examples
from sequences generated from the generative
model Gy. At the same time, the generative model
(G is updated by employing a policy gradient and
MC search on the basis of the expected end re-
ward received from the discriminative model Dy.
The reward is estimated by the likelihood that the
discriminative model Dy is tricked.

Once fully trained, we can use Gy to sample
output text.

3.3 Evaluation Metric

To evaluate our results, we compare against a
baseline Maximum Likelihood Estimate model
that assigns a sentiment weight to each target word
based on labeled training data. Namely, this base-
line is built around a Laplacian estimate of rela-
tive sentiment frequency for a given word. We first
preprocess the input data by building a mapping of
sentiment to relative word frequency, where each
word’s “score” is a Laplace-smoothed measure of
the portion of times the word is observed with a
given sentiment. In the baseline implementation,
the model simply returns the set of n words with
the highest score with a given sentiment flag (on
a 0-4 scale), making the output of the baseline de-
terministic.

This creates an underlying weighted vocabu-
lary, from which sentences would be generated.
Each sentence is generated to maximize a partic-
ular log likelihood function, using the earlier de-
fined weights. This baseline was chosen because
this was the same baseline used by Yu’s team, and
was explained by the team to be a strong baseline
choice (Lantao Yu, 2017).

Since we weren’t performing a language trans-
lation task in the same way that Yu et al. (2017)
did, we didn’t use the same bilingual evaluation
understudy (BLEU) metric that allowed Yu and his
team to quantify the quality of the generated text.
For our project, we leaned more toward using a
human-based evaluation metric, in that we roughly
intuited the performance of our model given its

generated samples. We discuss drawbacks of this
evaluation metric as well as potential alternatives
in sections 5 and 6.

3.4 Experimental Setup

The first step in our approach of implementing
Lantao Yu et al.’s SeqGAN was splitting the SST
dataset as described in Section 3.1. Theoretically,
these splits would allow us to gain insight into our
second hypothesis of whether changing the train-
ing dataset’s sentiment distribution would influ-
ence the SeqGAN’s output.

Our experimental approach then involved test-
ing the SeqGAN implementation on the full SST
dataset, the positive subset, and the negative sub-
set, and comparing these results to the MLE base-
line. In order to get our SeqGAN to properly com-
pile for each of these datasets however, we needed
to build a dictionary with each subset’s unique
characters (and pipe that into the model), so the
SeqGAN could understand what character distri-
bution to sample from.

Pending the results from each of these three ma-
jor experiments, we would also get a sense for the
ability of SeqGANS to generate textual output (our
first hypothesis).

4 Results

loss/discriminator/total loss/generator/total

0.250 160
0.200 120
0.150
8.00
0.100
00500 400
000
0.00
0000 2000k 4000k 60.00K 0000 2000k 4000k 60.00k

loss/discriminator/total loss/generator/total

0.200
0.160 120
0.120
00800
0.0400
Q.00 0.00
0.000 2000« 40.00k B0.00< 80.00K 100.0< 0000 2000k 4000k 6000k B0.00k 100.0k

loss/discriminator/total loss/generator/total

0.200
0.160 120
0.120 800
0.0800
0.0400
000

0.000 20,00k 40.00< 60.00k 80.00< 100.0k 0000 2000k 40.00k 60.00k 80.00k 100.0k

Figure 4: Moving from top to bottom: the discrim-
inator and generator loss from training on the pos-
itive, negative, and full SST datasets, respectively.

Generated Text Dataset Iters. Model
captivating splendid - - MLE
exceptional - - MLE
is a comedy Pos 6k Seq

in and and and th Pos 60k Seq
movie is a film Neg 6k Seq
ine it ’s not th Neg 60k Seq
a movie is amovie Full 6k Seq
intelligent and a Full 60k Seq
movie is a success

Table 3: Example sampled text, with correspond-
ing training dataset as well as time of sampling, in
terms of iterations.

Notes on implementation: Each of the three ex-
periments (reference Section 3.4) took about a day
and a half to train up to around 60,000 itera-
tions. To get a sense for how the generated output
evolved over the course of training, we sampled at
6,000 as well as at 60, 000 iterations.

First, training our SeqGAN on the positive sub-
set of the SST, we saw the model output generated
text comprised of seemingly coherent sounding
phrases about 6,000 iterations in, but comprised
of mostly articles and incomplete words 60, 000
iterations in. The positive sentiment seemed miss-
ing (samples were neutral instead of having any
particular sentiment skew) during the sample from
6, 000 iterations, and entirely destroyed during the
sample from 60,000 iterations. See Table 3 for
example text samples.

Training our SeqGAN on the negative subset
of the SST, we saw a similar outcome, where
the model output seemingly coherent fragments of
text 6, 000 iterations in, but output mostly articles
and incomplete words 60, 000 iterations in. The
negative sentiment seemed largely missing (sam-
ples were neutral instead of having any particular
sentiment skew) during the sample from 6, 000 it-
erations, and again entirely destroyed during the
sample from 60,000 iterations. See Table 3 for
example text samples.

Training our model on the full dataset, however,
yielded different but related results. Specifically,
the model output seemingly coherent fragments of
text both 6,000 and 60,000 iterations in. While
any particular sentiment was absent at 6, 000 iter-
ations, the samples from 60, 000 iterations seemed
skewed in the positive direction.

Our baseline, which during this particular run
we configured to output generated text of length
10 with an extremely positive sentiment (senti-
ment score of 4), generated the following output:
“breathtaking universal thoughtful kinnear first-
class breathtakingly dazzling tears’.

5 Analysis

As a quick observation, we first saw that both the
discriminator and generator appeared to be train-
ing at the same rate (reference the discriminator
and generator loss curves from Figure 4). This
conveyed to us that the GAN was operating as de-
sired during training; namely, both players were
evenly matched and none was overpowering the
other.

Looking at Table 3 and reading into some of
the differences between the baseline generated text
versus the generated text from our various Seq-
GAN experiments, we notice that our MLE im-
plementation appears to do a better job at generat-
ing significant words, while our SeqGAN appears
to be learning some of the nuances of generating
phrases (including for example punctuation and
grammar). In other words, the baseline model de-
livers strong results with respect to true sentiment
of a given string, but performs very poorly in terms
of actual sentence coherence and grammar. Rea-
soning a bit further, this is likely because our MLE
model does not take into consideration the previ-
ously occurring word (the SeqGAN model does
in fact do so) and instead explicitly counts up in-
stances of occurrence of particular word-sentiment
taggings.

Another major takeaway, alluded to in Section
4, is that while training our SeqGAN on both our
positive and negative SST subsets, the generated
text after 6,000 iterations is more coherent than
the text generated after 60, 000 iterations. This is
most likely due to an overfitting problem, espe-
cially given that GANs are known to have limited
variance in the range of outputs, which might ex-
plain the repeated occurrence of the same articles
and incomplete words in the text generated after
60, 000 iterations. Considering the results of the
positive and negative experiments in the context
of the results from the full SST experiment, we
see that the datasets for the experiments where we
see this coherence problem are derivations (im-
portantly, subsets) of the full SST, which almost
certainly further compounded the issue. Specifi-

cally, splitting the data in this way ultimately re-
duced the total vocabulary available during train-
ing. With a fraction of the vocabulary of the full
SST dataset, the negative and positive experiments
converged to nonsense by 60, 000 iterations while
the full experiment did not.

The last main discussion point involves the
drawbacks of the evaluation mechanism we chose
for this project (additionally elaborated on in the
following 6 section). While human evaluation
might be ideal if we wanted to get as close as
possible to a human oracle, the human evaluation
metric is very subjective as it is not standardized.
For example, asking people to assign sentiment or
asses the coherence of a phrase they see is neither
practical nor guaranteed to be accurate. Lantao Yu
et al., in order to simulate real-world structured se-
quences, considered a language model to capture
the dependency of the tokens (2017). They use a
randomly initialized LSTM as the true model (i.e.
the oracle) to generate the real data distribution.
However, this was not quite feasible for our exper-
imental approach given our various time and com-
pute constraints.

6 Conclusion and Future Work

To conclude, using our SeqGAN implementation,
we were able to generate phrases of varying length
by sampling sequences from the trained SeqGAN
model, thus confirming our first hypothesis. Re-
garding our second hypothesis about changing the
training dataset sentiment distribution, we saw that
changing the training dataset definitely influenced
the sentiment of the generated output text. In fact,
revisiting the functionality of a conditional GAN
from section 2, one can reason that this perfor-
mance closely mirrored that of a conditional GAN
(M. Mirza, 2014).

There are abundant opportunities for future
work on this problem. We outline 3: Ablation,
Evaluation mechanisms (Synthetic Data, BLEU),
and Conditional GANS.

A robust ablation study might be helpful in or-
der to test what features of our model or algo-
rithm most optimize for high performance (in this
case high quality generated text). Ablation options
could include adding or subtracting various lay-
ers in the generator or discriminator nets. Alter-
natively, one could even experiment with different
word vectorization techniques like GloVe or Gum-
bel Softmax (M. Kusner, 2016) that solve the dis-

crete data backpropagation problem in a manner
different from Yu et al.

Referencing the discussion in section 5 on
the drawbacks of our evaluation mechanism, one
could swap the mechanism for either a Synthetic
Data or BLEU metric. Yu et al. implemented
a synthetic data approach, where they performed
extensive experiments based on synthetic and real
data, which were conducted to investigate the ef-
ficacy and properties of the proposed SeqGAN.
In their synthetic data environment the generative
model was partially fed with its own synthetic data
as a prefix (observed tokens) rather than the true
data when deciding the next token in the training
stage (Lantao Yu, 2017). As mentioned in the pre-
vious section, this evaluation mechanism closely
approximated real-world structured sequences and
was considered by Yu and his team to be most rep-
resentative of a human oracle that manually labels
the data (2017).

Lantao Yu et al. also used the BLEU compari-
son mechanism (frequently used in machine trans-
lation applications) to quantitatively assess how
accurate their text generation was at translating be-
tween two languages . While our implementation
didnt involve such an inter-language translation,
some efforts could have been made to adapt BLEU
to our task. BLEU, however, would assume that
the goal of the text generation was to as closely as
possible replicate a particular phrase, which might
not always be the case (Lantao Yu, 2017).

Our last suggested trajectory for future work in-
volves adding functionality to the SeqGAN that
would allow it to generate text conditioned on sen-
timent. This functionality could be added accord-
ing to Mirza and Osindero’s paper published in
2014 (2014), and would be accomplished by feed-
ing an additional input into the discriminator and
generator as an additional input layer.

It is quite clear that there is vast potential for
GANSs to make an impact in improving text gen-
eration techniques, whose applications can be fur-
ther extrapolated to improving language models,
machine translation, summarization, and caption-
ing (Xiao, 2017). High level motivations for re-
search pursuits in this area are: 1) GANs in gen-
eral are an extremely recent learning architecture
that allows for representation and manipulation of
high dimensional probability distributions, and 2)
success in this area has potential to assist in semi-
supervised learning and to develop systems, which

can communicate as fluently as humans (S. Rama-
sundaram, 2016).

Code Repository

https://github.com/sminocha/text-generation-
GAN

References

codekansas. https://github.com/codekansas/seqgan-
text-tensorflow.

B. Raducanu J. Alvarez G. Perarnau, J. van de Weijer.
2016. Invertible conditional gans for image editing.

M. Mirza B. Xu D. Warde-Farley S. Ozair A. Courville
I. Goodfellow, J. Pouget-Abadie and Y. Bengio.
2014. Generative adverserial nets. 1.

He He Percy Liang Juncen Li, Robin Jia. 2018. Delete,
retrieve, generate: A simple approach to sentiment
and style transfer.

Jun Wang Yong Yu Lantao Yu, Weinan Zhang.
https://github.com/lantaoyu/seqgan.

Jun Wang Yong Yu Lantao Yu, Weinan Zhang. 2017.
Seqgan: Sequence generative adversarial nets with
policy gradient.

J. Hernandez-Lobato M. Kusner. 2016. Seqgan: Se-
quence generative adversarial nets with policy gra-
dient.

S. Osindero M. Mirza. 2014. Conditional generative
adversarial nets.

Jean Y. Wu Jason Chuang Christopher D. Manning
Andrew Y. Ng Richard Socher, Alex Perelygin and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank.

O. Vinyals A. M. Dai R. Jozefowicz S. R. Bowman,
L. Vilnis and S. Bengio. 2016. Generating sentences
from a continuous space.

S.P. Victor S. Ramasundaram. 2016. Gans for se-
quences of discrete elements with the gumbel-
softmax distribution.

X. Xiao. 2017. Text generation using adverserial train-
ing.

https://arxiv.org/pdf/1611.06355.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1609.05473.pdf
https://arxiv.org/pdf/1609.05473.pdf
https://arxiv.org/pdf/1609.05473.pdf
https://arxiv.org/pdf/1609.05473.pdf
https://arxiv.org/pdf/1609.05473.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
https://arxiv.org/pdf/1511.06349.pdf
https://arxiv.org/pdf/1511.06349.pdf
https://arxiv.org/pdf/1611.04051.pdf
https://arxiv.org/pdf/1611.04051.pdf
https://arxiv.org/pdf/1611.04051.pdf
https://pdfs.semanticscholar.org/0f94/057ed3675ee51fb45511a7318542cf2d2674.pdf 2017.
https://pdfs.semanticscholar.org/0f94/057ed3675ee51fb45511a7318542cf2d2674.pdf 2017.

